Deep Learning Track WiSe 24/25
Deep Learning Track WiSe 24/25
Deep Learning Track WiSe 24/25
  • Welcome to the Deep Learning Track
  • Setup
  • Learning Material
  • Section 1 - The Math
    • Derivatives and Gradients
    • Vectors, Matrices and Tensors
    • The power of matrix computation
    • Exercise - Matrix Computation
  • Section 2 - The Data
    • PyTorch Datasets and Data Loaders
    • Working with Data Tables
    • Exercise - Loading Data from a CSV file
    • Working with Images
    • Exercise - Image Datasets
    • Working with Text
  • Section 3 - Neural Networks
    • Activation Functions
    • Exercise - Activation Functions
    • Exercise - The Softmax Function
    • The Neuron
    • Two type of applications: Regression and Classification
    • Loss Functions
    • Exercise - Regression Loss Functions
    • Exercise - Classification Loss Functions
    • The Gradient Descent Algorithm
    • Exercise - Implementing Gradient Descent
    • Exercise - PyTorch Autograd
    • Exercise - Regression with Neural Networks
    • Exercise - Classification with Neural Networks
    • Playground - Neural Networks
  • Section 4 - Convolutional Neural Networks
    • Convolution
    • Convolutional Neural Networks
    • Classifying handwritten digits
    • Playground - Convolutional Neural Networks
    • Transfer Learning
  • Final Project - Text Classification
  • Further Resources
    • Computer Vision Libraries
    • Image Classification with PyTorch
    • Object Detection with PyTorch
    • Deep AI Explainability
Powered by GitBook
On this page
  1. Section 3 - Neural Networks

Exercise - Regression Loss Functions

In this notebook we will dive deeper into the two most common regression loss functions: L1 and L2 loss.

PreviousLoss FunctionsNextExercise - Classification Loss Functions

In this notebook you will implement the L1 and L2 loss functions and compute the losses for a given set of data points.

7KB
Regression Loss Functions.ipynb